Budget constraints are ubiquitous in online advertisement auctions. To manage these constraints and smooth out the expenditure across auctions, the bidders (or the platform on behalf of them) often employ pacing: each bidder is assigned a pacing multiplier between zero and one, and her bid on each item is multiplicatively scaled down by the pacing multiplier. This naturally gives rise to a game in which each bidder strategically selects a multiplier. The appropriate notion of equilibrium in this game is known as a pacing equilibrium. In this work, we show that the problem of finding an approximate pacing equilibrium is PPAD-complete for second-price auctions. This resolves an open question of Conitzer et al. [2021]. As a consequence of our hardness result, we show that the tatonnement-style budget-management dynamics introduced by Borgs et al. [2007] are unlikely to converge efficiently for repeated second-price auctions. This disproves a conjecture by Borgs et al. [2007], under the assumption that the complexity class PPAD is not equal to P. Our hardness result also implies the existence of a refinement of supply-aware market equilibria which is hard to compute with simple linear utilities.
翻译:在网上广告拍卖中,预算限制无处不在。为了管理这些限制并在整个拍卖中平滑支出,投标人(或代表投标人的平台)经常采用节奏:每个投标人被分配一个零和1之间的节奏乘数,而她对每个项目的投标则被倍增降为乘以节奏乘数。这自然会引发一个游戏,让每个投标人从战略上选择一个乘数。这个游戏中的适当平衡概念被称为一个节奏均衡。在这项工作中,我们表明找到一个近似节奏平衡的问题在于二价拍卖的PPAD完成。这解决了Conitzer等人(2021年)的公开问题。由于我们的强硬性结果,我们表明Borgs 等人(2007年) 推出的配对式预算管理动态不太可能有效地结合到重复的二次价格拍卖。这个假设是,Borgs 等人(2007年) 无法预测一个近乎速度平衡的假设,即复杂类PPADDD(PAD)不及他人(PAW)之间的精确性改进也意味着我们的硬性市场。