An acyclic edge coloring of a graph is a proper edge coloring in which there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $a'(G)$, is the minimum positive integer $k$ such that $G$ has an acyclic edge coloring with $k$ colors. It has been conjectured by Fiam\v{c}\'{\i}k that $a'(G) \le \Delta+2$ for any graph $G$ with maximum degree $\Delta$. Linear arboricity of a graph $G$, denoted by $la(G)$, is the minimum number of linear forests into which the edges of $G$ can be partitioned. A graph is said to be chordless if no cycle in the graph contains a chord. Every $2$-connected chordless graph is a minimally $2$-connected graph. It was shown by Basavaraju and Chandran that if $G$ is $2$-degenerate, then $a'(G) \le \Delta+1$. Since chordless graphs are also $2$-degenerate, we have $a'(G) \le \Delta+1$ for any chordless graph $G$. Machado, de Figueiredo and Trotignon proved that the chromatic index of a chordless graph is $\Delta$ when $\Delta \ge 3$. They also obtained a polynomial time algorithm to color a chordless graph optimally. We improve this result by proving that the acyclic chromatic index of a chordless graph is $\Delta$, except when $\Delta=2$ and the graph has a cycle, in which case it is $\Delta+1$. We also provide the sketch of a polynomial time algorithm for an optimal acyclic edge coloring of a chordless graph. As a byproduct, we also prove that $la(G) = \lceil \frac{\Delta }{2} \rceil$, unless $G$ has a cycle with $\Delta=2$, in which case $la(G) = \lceil \frac{\Delta+1}{2} \rceil = 2$. To obtain the result on acyclic chromatic index, we prove a structural result on chordless graphs which is a refinement of the structure given by Machado, de Figueiredo and Trotignon for this class of graphs. This might be of independent interest.


翻译:图形的周期边缘颜色是一种适当的边际颜色, 其中没有比色周期。 以 $( G) 表示的图形 G$ 的周期色化指数是最低正数整数 美元, 因此$( g) 以 美元 颜色显示的环色边缘颜色。 由 Fiam\ v{ c\\\\\\\\\\\ k) 以 圆形颜色表示的。 以 $( g) 表示的每 美元( le d) d 和 2美元, 任何以 $( G) 表示的G$, 以 $( G) 表示的图形的周期性色色化指数是最小数 。 以 美元 美元表示的离色( d) 美元, 以 美元表示的平价( 美元) 也以 美元 美元表示的平价。 以 美元 美元表示的是, 美元 以 美元 美元 以 美元 美元 = 美元 。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
0+阅读 · 2023年3月23日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员