Persistent topological properties of an image serve as an additional descriptor providing an insight that might not be discovered by traditional neural networks. The existing research in this area focuses primarily on efficiently integrating topological properties of the data in the learning process in order to enhance the performance. However, there is no existing study to demonstrate all possible scenarios where introducing topological properties can boost or harm the performance. This paper performs a detailed analysis of the effectiveness of topological properties for image classification in various training scenarios, defined by: the number of training samples, the complexity of the training data and the complexity of the backbone network. We identify the scenarios that benefit the most from topological features, e.g., training simple networks on small datasets. Additionally, we discuss the problem of topological consistency of the datasets which is one of the major bottlenecks for using topological features for classification. We further demonstrate how the topological inconsistency can harm the performance for certain scenarios.
翻译:图像的持久性地形特性是另一个描述符,它提供了传统神经网络可能无法发现的洞察力。这个领域的现有研究主要侧重于在学习过程中有效地整合数据的地形特性,以便提高性能。然而,目前没有开展任何研究,以证明在各种培训情景中采用地形特性可以促进或损害性能的所有可能的情景。本文详细分析了在各种培训情景中图像分类的地形特性的有效性,其定义是:培训样本的数量、培训数据的复杂性和主干网络的复杂性。我们确定了最能从地形特征中受益的情景,例如,对小型数据集的简单网络进行培训。此外,我们讨论了数据集的地形一致性问题,这是使用地形特征进行分类的主要瓶颈之一。我们进一步表明,在地形上的不一致会如何损害某些情景的性能。