Relying on sheaf theory, we introduce the notions of projected barcodes and projected distances for multi-parameter persistence modules. Projected barcodes are defined as derived pushforward of persistence modules onto $\mathbb{R}$. Projected distances come in two flavors: the integral sheaf metrics (ISM) and the sliced convolution distances (SCD). We conduct a systematic study of the stability of projected barcodes and show that the fibered barcode is a particular instance of projected barcodes. We prove that the ISM and the SCD provide lower bounds for the convolution distance. Furthermore, we show that the $\gamma$-linear ISM and the $\gamma$-linear SCD which are projected distances tailored for $\gamma$-sheaves can be computed using TDA software dedicated to one-parameter persistence modules. Moreover, the time and memory complexity required to compute these two metrics are advantageous since our approach does not require computing nor storing an entire $n$-persistence module.
翻译:根据沙夫理论,我们引入了多参数持久性模块的预测条码和预测距离概念。预计条码被定义为从推推推持久性模块到$\mathb{R}$。预计距离分为两种口味:整体沙夫测量值(ISM)和切片变速距离(SCD)。我们对预测条码的稳定性进行系统研究,并表明纤维条码是预测条码的一个特例。我们证明,IMM和SCD为卷动距离提供了较低的界限。此外,我们表明,预计用于$\gamma$-线性ISM和$\gamma$-线性SCD的耐久性模块预测距离可以使用专门用于1度耐久模块的TDA软件计算。此外,对这两条码进行比较所需的时间和记忆复杂性是有利的,因为我们的方法不需要计算或储存一个完整的美元耐久的模块。