We present a variety of novel information-theoretic generalization bounds for learning algorithms, from the supersample setting of Steinke & Zakynthinou (2020)-the setting of the "conditional mutual information" framework. Our development exploits projecting the loss pair (obtained from a training instance and a testing instance) down to a single number and correlating loss values with a Rademacher sequence (and its shifted variants). The presented bounds include square-root bounds, fast-rate bounds, including those based on variance and sharpness, and bounds for interpolating algorithms etc. We show theoretically or empirically that these bounds are tighter than all information-theoretic bounds known to date on the same supersample setting.
翻译:我们为学习算法提出了各种新颖的信息理论概括界限,从Steinke和Zakynthinou(2020年)的超级抽样设置到“有条件的相互信息”框架的设置。我们的发展利用了将损失对子(来自培训实例和测试实例)下至一个数字的预测,并将损失值与Rademacher序列(及其变异体)相关联。 提出的界限包括平方根界限、速率界限(包括基于差异和锐度的界限)以及内插算法等的界限。 我们从理论上或从经验上表明,这些界限比在同一超模版设置上已知的所有信息理论界限都更紧。