In this paper, we investigate data-driven parameterized modeling of insertion loss for transmission lines with respect to design parameters. We first show that direct application of neural networks can lead to non-physics models with negative insertion loss. To mitigate this problem, we propose two deep learning solutions. One solution is to add a regulation term, which represents the passive condition, to the final loss function to enforce the negative quantity of insertion loss. In the second method, a third-order polynomial expression is defined first, which ensures positiveness, to approximate the insertion loss, then DeepONet neural network structure, which was proposed recently for function and system modeling, was employed to model the coefficients of polynomials. The resulting neural network is applied to predict the coefficients of the polynomial expression. The experimental results on an open-sourced SI/PI database of a PCB design show that both methods can ensure the positiveness for the insertion loss. Furthermore, both methods can achieve similar prediction results, while the polynomial-based DeepONet method is faster than DeepONet based method in training time.


翻译:在本文中,我们根据设计参数调查传输线插入损失的数据驱动参数模型; 我们首先显示神经网络的直接应用可能导致非物理模型,产生负插入损失; 为了缓解这一问题,我们建议了两个深层次的学习解决办法。 一个办法是在最后损失函数中添加一个监管术语,代表被动状态,以强制执行负插入损失的负数。 在第二种方法中,首先定义了第三阶多位表达式,以确保插入损失的正值,近似插入损失,然后采用最近为功能和系统建模提议的DeepONet神经网络结构,以模拟多语言的系数。由此产生的神经网络用于预测多语言表达的系数。多氯联苯设计中开源的SI/PI数据库的实验结果显示,这两种方法都能够确保插入损失的积极性。此外,两种方法都能够取得类似的预测结果,而基于多层次的DeepONet方法在培训时间比基于DeepONet的方法更快。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2021年5月13日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员