题目: Probabilistic Logic Neural Networks for Reasoning

摘要:

知识图谱推理的目的是通过对观测到的事实进行推理来预测缺失的事实,它在许多应用中起着至关重要的作用。传统的基于逻辑规则的方法和近年来的知识图谱嵌入方法都对这一问题进行了广泛的探讨。马尔可夫逻辑网络(MLN)是一种有原则的基于规则的逻辑方法,它能够利用一阶逻辑的领域知识,同时处理不确定性。然而,由于其复杂的图形结构,MLNs的推理通常是非常困难的。与MLNs不同的是,知识图的嵌入方法(如TransE、DistMult)学习有效的实体嵌入和关系嵌入进行推理,这样更有效、更高效。然而,他们无法利用领域知识。在本文中,我们提出了概率逻辑神经网络(pLogicNet),它结合了两种方法的优点。pLogicNet使用一阶逻辑的马尔可夫逻辑网络定义所有可能的三联体的联合分布,该网络可以通过变分EM算法进行有效优化。采用知识图谱嵌入模型推断缺失的三联体,根据观测到的三联体和预测到的三联体更新逻辑规则权值。在多个知识图谱的实验证明了pLogicNet在许多竞争基线上的有效性。

作者:

瞿锰是蒙特利尔学习算法研究所的一年级博士生,之前,在伊利诺伊大学香槟分校获得了硕士学位,此外,在北京大学获得了学士学位。主要研究方向为机器学习、贝叶斯深度学习、数据挖掘和自然语言处理。

成为VIP会员查看完整内容
104

相关内容

知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它能为学科研究提供切实的、有价值的参考。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
论文浅尝 | 一种用于多关系问答的可解释推理网络
开放知识图谱
18+阅读 · 2019年5月21日
论文浅尝 | 用可微的逻辑规则学习完成知识库推理
开放知识图谱
14+阅读 · 2018年7月5日
论文浅尝 | 端到端神经视觉问答之上的显式推理
开放知识图谱
7+阅读 · 2018年6月28日
论文浅尝 | 变分知识图谱推理:在KG中引入变分推理框架
Neural Module Networks for Reasoning over Text
Arxiv
9+阅读 · 2019年12月10日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
8+阅读 · 2018年3月17日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关VIP内容
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
相关资讯
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
论文浅尝 | 一种用于多关系问答的可解释推理网络
开放知识图谱
18+阅读 · 2019年5月21日
论文浅尝 | 用可微的逻辑规则学习完成知识库推理
开放知识图谱
14+阅读 · 2018年7月5日
论文浅尝 | 端到端神经视觉问答之上的显式推理
开放知识图谱
7+阅读 · 2018年6月28日
论文浅尝 | 变分知识图谱推理:在KG中引入变分推理框架
相关论文
Neural Module Networks for Reasoning over Text
Arxiv
9+阅读 · 2019年12月10日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
8+阅读 · 2018年3月17日
Arxiv
6+阅读 · 2018年1月29日
微信扫码咨询专知VIP会员