In the study of temporal graphs, only paths respecting the flow of time are relevant. In this context, many concepts of walks disjointness were proposed over the years, and the validity of Menger's Theorem, as well as the complexity of related problems, has been investigated. In this paper, we introduce and investigate a type of disjointness that is only time dependent. Two walks are said to be snapshot disjoint if they are not active in a same snapshot (also called timestep). The related paths and cut problems are then defined and proved to be W[1]-hard and XP-time solvable when parameterized by the size of the solution. Additionally, in the light of the definition of Mengerian graphs given by Kempe, Kleinberg and Kumar in their seminal paper (STOC'2000), we define a Mengerian graph for time as a graph $G$ that cannot form an example where Menger's Theorem does not hold in the context of snapshot disjointness. We then give a characterization in terms of forbidden structures and provide a polynomial-time recognition algorithm. Finally, we also prove that, given a temporal graph $(G,\lambda)$ and a pair of vertices $s,z\in V(G)$, deciding whether at most $h$ multiedges can separate $s$ from $z$ is NP-complete.


翻译:在时间图研究中,只有与时间流相关的路径才具有相关性。在这方面,多年来提出了许多行走脱节的概念,对门杰理论的有效性以及相关问题的复杂性进行了调查。在本文中,我们介绍并调查了一种仅取决于时间的脱节类型。据说,如果两行不在同一快照(也称为时间步骤)中活动,则会快照脱节。随后,相关路径和切断问题被定义并被证明为W[1]硬和XP-时间可按解决方案大小参数来比较的脱节概念。此外,根据肯佩、克莱伯格和库马尔在其基本文件(STOC'2000年)中给出的门杰尔图表定义,我们把门杰尔图定义为一个时间的图表$G$,但不能成为在快照脱节的背景下不维持 Menger的神志。我们随后对禁制结构进行定性,并提供一个以美元为美元的综合数字识别。最后,我们还要证明一个以美元/美元为美元的平面图,是否以美元为美元。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月6日
Arxiv
0+阅读 · 2023年4月4日
Arxiv
0+阅读 · 2023年4月4日
Arxiv
0+阅读 · 2023年4月3日
Arxiv
0+阅读 · 2023年4月3日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
VIP会员
相关VIP内容
专知会员服务
84+阅读 · 2020年12月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关论文
Arxiv
0+阅读 · 2023年4月6日
Arxiv
0+阅读 · 2023年4月4日
Arxiv
0+阅读 · 2023年4月4日
Arxiv
0+阅读 · 2023年4月3日
Arxiv
0+阅读 · 2023年4月3日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员