In this work, for a given oriented graph $D$, we study its interval and hull numbers, denoted by ${in}(D)$ and ${hn}(D)$, respectively, in the geodetic, ${P_3}$ and ${P_3^*}$ convexities. This last one, we believe to be formally defined and first studied in this paper, although its undirected version is well-known in the literature. Concerning bounds, for a strongly oriented graph $D$, we prove that ${hn_g}(D)\leq m(D)-n(D)+2$ and that there is a strongly oriented graph such that ${hn_g}(D) = m(D)-n(D)$. We also determine exact values for the hull numbers in these three convexities for tournaments, which imply polynomial-time algorithms to compute them. These results allows us to deduce polynomial-time algorithms to compute ${hn_{P_3}}(D)$ when the underlying graph of $D$ is split or cobipartite. Moreover, we provide a meta-theorem by proving that if deciding whether ${in_g}(D)\leq k$ or ${hn_g}(D)\leq k$ is NP-hard or W[i]-hard parameterized by $k$, for some $i\in\mathbb{Z_+^*}$, then the same holds even if the underlying graph of $D$ is bipartite. Next, we prove that deciding whether ${hn_{P_3}}(D)\leq k$ or ${hn_{P_3^*}}(D)\leq k$ is W[2]-hard parameterized by $k$, even if the underlying graph of $D$ is bipartite; that deciding whether ${in_{P_3}}(D)\leq k$ or ${in_{P_3^*}}(D)\leq k$ is NP-complete, even if $D$ has no directed cycles and the underlying graph of $D$ is a chordal bipartite graph; and that deciding whether ${in_{P_3}}(D)\leq k$ or ${in_{P_3^*}}(D)\leq k$ is W[2]-hard parameterized by $k$, even if the underlying graph of $D$ is split. We also argue that the interval and hull numbers in the oriented $P_3$ and $P_3^*$ convexities can be computed in polynomial time for graphs of bounded tree-width by using Courcelle's theorem.
翻译:有向图的凸包数和区间数
翻译后的摘要:
在本文中,对于给定的有向图$D$,我们研究了其在测地线、$P_3$和$P_3^*$凸性下的区间和凸包数,分别用${in}(D)$和${hn}(D)$表示。我们认为,对于这个凸性,虽然它的无向版本在文献中已经得到了广泛的研究,但它在本文中得到了正式的定义和深入的研究。关于界限,对于一个强有向图$D$,我们证明${hn_g}(D)\leq m(D)-n(D)+2$,且存在一个强有向图$D$,满足${hn_g}(D) = m(D)-n(D)$。我们还确定了比赛图的这三种凸性的凸包数的精确值,这些结果意味着能够多项式时间内计算它们。这些结果允许我们推导出多项式时间算法来计算${hn_{P_3}}(D)$当$D$的底层图是分裂或半双波图的情况下。此外,我们提供了一个元定理,通过证明对于某些$i\in\mathbb{Z_+^*}$,如果决定${in_g}(D)\leq k$或${hn_g}(D)\leq k$是否是NP难或W[i]难的参数化问题,则相同的结论也适用于底层图为二分图的情况。接下来,我们证明了即使$D$的底层图是二分图,决定${hn_{P_3}}(D)\leq k$或${hn_{P_3^*}}(D)\leq k$是否是参数化问题W[2]-难的,决定${in_{P_3}}(D)\leq k$或${in_{P_3^*}}(D)\leq k$是否为NP完全的,即使$D$没有有向环,底层图为弦图的二分图,以及决定${in_{P_3}}(D)\leq k$或${in_{P_3^*}}(D)\leq k$是否为W[2]-难的,即使$D$的底层图是分裂的。我们还认为,如果底层图的树宽有序,则可以使用Courcelle's定理多项式时间计算有界树宽图的有向$P_3$和$P_3^*$凸性的区间和凸包数。