In-context reinforcement learning (ICRL) is a frontier paradigm for solving reinforcement learning problems in the foundation model era. While ICRL capabilities have been demonstrated in transformers through task-specific training, the potential of Large Language Models (LLMs) out-of-the-box remains largely unexplored. Recent findings highlight that LLMs often face challenges when dealing with numerical contexts, and limited attention has been paid to evaluating their performance through preference feedback generated by the environment. This paper is the first to investigate LLMs as in-context decision-makers under the problem of Dueling Bandits (DB), a stateless preference-based reinforcement learning setting that extends the classic Multi-Armed Bandit (MAB) model by querying for preference feedback. We compare GPT-3.5 Turbo, GPT-4, GPT-4 Turbo, Llama 3.1, and o1-Preview against nine well-established DB algorithms. Our results reveal that our top-performing LLM, GPT-4 Turbo, has the zero-shot relative decision-making ability to achieve surprisingly low weak regret across all the DB environment instances by quickly including the best arm in duels. However, an optimality gap exists between LLMs and classic DB algorithms in terms of strong regret. LLMs struggle to converge and consistently exploit even when explicitly prompted to do so, and are sensitive to prompt variations. To bridge this gap, we propose an agentic flow framework: LLM with Enhanced Algorithmic Dueling (LEAD), which integrates off-the-shelf DB algorithms with LLM agents through fine-grained adaptive interplay. We show that LEAD has theoretical guarantees inherited from classic DB algorithms on both weak and strong regret. We validate its efficacy and robustness even with noisy and adversarial prompts. The design of our framework sheds light on how to enhance the trustworthiness of LLMs used for in-context decision-making.
翻译:暂无翻译