This paper considers '$\delta$-almost Reed-Muller codes', i.e., linear codes spanned by evaluations of all but a $\delta$ fraction of monomials of degree at most $d$. It is shown that for any $\delta > 0$ and any $\varepsilon>0$, there exists a family of $\delta$-almost Reed-Muller codes of constant rate that correct $1/2-\varepsilon$ fraction of random errors with high probability. For exact Reed-Muller codes, the analogous result is not known and represents a weaker version of the longstanding conjecture that Reed-Muller codes achieve capacity for random errors (Abbe-Shpilka-Wigderson STOC '15). Our approach is based on the recent polarization result for Reed-Muller codes, combined with a combinatorial approach to establishing inequalities between the Reed-Muller code entropies.
翻译:本文考虑了“ $ delta$- most Reed- Muller code ”, 也就是说, 线性代码通过对除$\delta$以外的所有单度分数的评估, 最多以美元计算。 显示对于任何$delta > 0美元和任何$\varepsilon> 0美元, 都存在一个恒定汇率的组合, 即$\delta$- most Reed- Muller code, 校正1/2\ varepsilon 的随机差错部分, 概率很高。 对于精准 Reed- Muller code, 类似的结果并不为人知, 并且代表一个较弱的长期预测版本, Reed- Muller code 能够随机差错( Abbe- Shpilka- Wigderson STOC'15) 。 我们的方法基于Reed- Muller code, 最近的两极分化结果, 结合一种组合式方法来确定 Reed- Muller coller codules ents ents entseties.