The present paper mainly studies limits and constructions of insertion and deletion (insdel for short) codes. The paper can be divided into two parts. The first part focuses on various bounds, while the second part concentrates on constructions of insdel codes. Although the insdel-metric Singleton bound has been derived before, it is still unknown if there are any nontrivial codes achieving this bound. Our first result shows that any nontrivial insdel codes do not achieve the insdel-metric Singleton bound. The second bound shows that every $[n,k]$ Reed-Solomon code has insdel distance upper bounded by $2n-4k+4$ and it is known in literature that an $[n,k]$ Reed-Solomon code can have insdel distance $2n-4k+4$ as long as the field size is sufficiently large. The third bound shows a trade-off between insdel distance and code alphabet size for codes achieving the Hamming-metric Singleton bound. In the second part of the paper, we first provide a non-explicit construction of nonlinear codes that can approach the insdel-metric Singleton bound arbitrarily when the code alphabet size is sufficiently large. The second construction gives two-dimensional Reed-Solomon codes of length $n$ and insdel distance $2n-4$ with field size $q=O(n^5)$.


翻译:本文主要研究插入和删除代码的限制和构建( 缩略) 。 纸张可以分为两部分。 第一部分侧重于多个边框, 第二部分侧重于正方码的构造。 虽然正方数单顿绑定是以前产生的, 但尚不清楚是否有非边际代码实现这一绑定。 我们的第一个结果显示, 任何非边际的硬度代码都达不到内分数单吨绑定。 第二个边框显示, 每一个 $[ k] 的 Reed- Solomon 代码都具有由 $2n-4k+4$ 上方的距离, 而在文献中, Reed- Solomon 代码在字段大小足够大的情况下, $ $[ k] 的正方程式可以有 $2n-4 的长度。 Reed- Solomon 代码在硬度的第二行距内, 将不解释性硬度为2xxxxxxx。 将硬度的硬度标度标定成为硬度的第二行。 在硬度范围内, 度Sestal- adxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月28日
Arxiv
0+阅读 · 2022年1月28日
Arxiv
0+阅读 · 2022年1月27日
Arxiv
0+阅读 · 2022年1月26日
VIP会员
相关主题
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员