The list-decodable code has been an active topic in theoretical computer science.There are general results about the list-decodability to the Johnson radius and the list-decoding capacity theorem. In this paper we show that rates, list-decodable radius and list sizes are closely related to the classical topic of covering codes. We prove new general simple but strong upper bounds for list-decodable codes in general finite metric spaces based on various covering codes. The general covering code upper bounds can be applied to the case that the volumes of the balls depend on the centers, not only on the radius. Then any good upper bound on the covering radius or the size of covering code imply a good upper bound on the sizes of list-decodable codes. Our results give exponential improvements on the recent generalized Singleton upper bound in STOC 2020 for Hamming metric list-decodable codes, when the code lengths are large. A generalized Singleton upper bound for average-radius list-decodable codes is also given from our general covering code upper bound. Even for the list size $L=1$ case our covering code upper bounds give highly non-trivial upper bounds on the sizes of codes with the given minimum distance. We also suggest to study the combinatorial covering list-decodable codes as a natural generalization of combinatorial list-decodable codes. We apply our general covering code upper bounds for list-decodable rank-metric codes, list-decodable subspace codes, list-decodable insertion codes list-decodable deletion codes and list-decodable sum-rank-metric codes. Some new better results about non-list-decodability of rank-metric codes, subspace codes and sum-rank-metric codes are obtained.


翻译:在理论计算机科学中, 列表标记代码是一个活跃的主题。 包含代码上限界限的通用代码可以适用于球量取决于中心, 不仅在半径上。 然后, 在覆盖半径或列表解码能力标语中, 任何好的上限都意味着在列表标记代码的大小上有一个良好的上限。 在覆盖代码的经典主题上, 我们的结果表明, 在基于各种覆盖代码的普通有限计量空间中, 列表标记代码具有新的简单但强大的上界。 覆盖代码的普通代码中, 覆盖代码上限的通用单吨上限可以适用于球量取决于中心, 不仅取决于半径。 然后, 在覆盖代码半径或列表解码的大小上下限中, 任何好的上限都意味着列表半径或列表的分解码的大小上下限。 我们的最近通用SteOC 2020 的 Starton 上限定义有指数的指数, 当代码长度大时, 我们的普通可下限列表的上限代码中也具有通用的上限的上限。 即使列表的列表中的列表值为 $=1美元, 包含代码的上限, 我们的上限的上限的代码的上层的代码的上限的代码中, 我们的上限的上层的代码中, 也显示的上限的上限的代码。

0
下载
关闭预览

相关内容

【经典书】凸优化:算法与复杂度,130页pdf
专知会员服务
81+阅读 · 2021年11月16日
专知会员服务
82+阅读 · 2021年7月31日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2022年1月28日
List Decoding of 2-Interleaved Binary Alternant Codes
Arxiv
0+阅读 · 2022年1月26日
VIP会员
相关VIP内容
【经典书】凸优化:算法与复杂度,130页pdf
专知会员服务
81+阅读 · 2021年11月16日
专知会员服务
82+阅读 · 2021年7月31日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员