The Minkowski functionals, including the Euler characteristic statistics, are standard tools for morphological analysis in cosmology. Motivated by cosmological research, we examine the Minkowski functional of the excursion set for an isotropic central limit random field, the $k$-point correlation functions ($k$th order cumulants) of which have the same structure as that assumed in cosmic research. We derive the asymptotic expansions of the expected Euler characteristic density incorporating skewness and kurtosis, which is a building block of the Minkowski functional. The resulting formula reveals the types of non-Gaussianity that cannot be captured by the Minkowski functionals. As an example, we consider an isotropic chi-square random field, and confirm that the asymptotic expansion precisely approximates the true Euler characteristic density.
翻译:Minkowski功能,包括Euler特征统计,是宇宙学形态分析的标准工具。受宇宙学研究的驱动,我们检查了用于异向中央限制随机场的出游功能Minkowski功能,即美元-点相关函数(k$th coulants)与宇宙研究中假定的相同结构。我们从中得出了包含Skiwness和kurtosis的预期Euler特征密度的无症状扩展,这是Minkowski功能的一个构件。由此产生的公式揭示了非Gausianity的种类,而Minkowski函数无法捕捉到这些类型。举例来说,我们认为这是一个异向的奇异方形随机字段,并确认该无症状扩展准确接近了真正的Euler特征密度。