Applications designed for entertainment and other non-instrumental purposes are challenging to optimize because the relationships between system parameters and user experience can be unclear. Ideally, we would like to crowdsource these design questions, but existing approaches are geared towards systems evaluation or ranking discrete choices and not for optimizing over continuous parameter spaces. In addition, users are accustomed to informally expressing opinions about experiences as critiques (e.g. it was too cold, too spicy, too big), rather than give precise feedback as an optimization algorithm would require. Unfortunately, it can be difficult to analyze qualitative feedback, especially in the context of quantitative modeling. In this article, we present collective criticism, a critiquing-based approach for modeling relationships between system parameters and subjective preferences. Critiques, such as "it was too easy/too challenging", are transformed into intervals and modeled using interval regression. Collective criticism has several advantages over other approaches: "too much/too little"-style feedback is intuitive for users and allows us to build predictive models for the optimal parameterization of the variables being critiqued. We present two studies where we model: (i) aesthetic preferences for images generated with neural style transfer and (ii) users' experiences of challenge in the video game Tetris. These studies demonstrate the flexibility of our approach, and show that it produces robust results that are straightforward to interpret and inline with users' stated preferences.
翻译:由于系统参数和用户经验之间的关系可能不清楚,因此为娱乐和其他非教学目的设计的应用程序很难优化,因为系统参数和用户经验之间的关系可能并不明确,因此优化是挑战性的。最理想的是,我们希望将这些设计问题集中起来,但现有办法针对的是系统评价或分级不同的选择,而不是优化连续参数空间。此外,用户习惯于非正式地表达对经验的看法,将其作为批评(例如,它太冷,太辣,太大),而不是提供精确的反馈,因为优化算法需要这样。不幸的是,分析质量反馈可能很困难,特别是在数量模型方面。在本篇文章中,我们提出集体批评,一种在系统参数和主观偏好之间建模关系模型的基点。Critiques,例如“太容易/太有挑战性”等,被转换成间隔式的间隔和模型。集体批评与其他方法相比有若干好处:“太多/太少”的反馈对用户是直截然的,使我们能够建立预测模型,特别是在数量模型中。我们提出了两种研究,我们用这种模型来示范:(i)在游戏上,用一种直截然的模型来解释,展示我们所生成的图像的偏好的方法,这些的用户的逻辑上的灵活性,以展示了我们所产生挑战性的方法。