A central quest of probing is to uncover how pre-trained models encode a linguistic property within their representations. An encoding, however, might be spurious-i.e., the model might not rely on it when making predictions. In this paper, we try to find encodings that the model actually uses, introducing a usage-based probing setup. We first choose a behavioral task which cannot be solved without using the linguistic property. Then, we attempt to remove the property by intervening on the model's representations. We contend that, if an encoding is used by the model, its removal should harm the performance on the chosen behavioral task. As a case study, we focus on how BERT encodes grammatical number, and on how it uses this encoding to solve the number agreement task. Experimentally, we find that BERT relies on a linear encoding of grammatical number to produce the correct behavioral output. We also find that BERT uses a separate encoding of grammatical number for nouns and verbs. Finally, we identify in which layers information about grammatical number is transferred from a noun to its head verb.
翻译:试探的核心探索是找出经过培训的模型如何在其演示中将语言属性编码成语言属性。 但是, 编码可能是虚假的, 也就是说, 模型在作出预测时可能不会依赖它。 在本文中, 我们试图找到模型实际使用的编码, 引入基于使用的研究设置 。 我们首先选择不使用语言属性就无法解决的行为性任务 。 然后, 我们试图通过干预模型的演示来清除该属性 。 我们争论说, 如果模型使用编码, 它的去除会损害所选行为任务的性能。 作为案例研究, 我们侧重于 BERT 编码的语法编号, 以及它如何使用编码来解决数字协议任务 。 我们实验地发现, BERT 依赖一个直线的语法编号编码来生成正确的行为性输出 。 我们还发现, BERT 使用一个单独的编码, 用于名词和动词的语法编号。 最后, 我们发现, 在哪个层次的语法数字信息从无到头转移。