Network-aware cascade size prediction aims to predict the final reposted number of user-generated information via modeling the propagation process in social networks. Estimating the user's reposting probability by social influence, namely state activation plays an important role in the information diffusion process. Therefore, Graph Neural Networks (GNN), which can simulate the information interaction between nodes, has been proved as an effective scheme to handle this prediction task. However, existing studies including GNN-based models usually neglect a vital factor of user's preference which influences the state activation deeply. To that end, we propose a novel framework to promote cascade size prediction by enhancing the user preference modeling according to three stages, i.e., preference topics generation, preference shift modeling, and social influence activation. Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate. Extensive experiments on two large-scale real-world datasets have clearly demonstrated the effectiveness of our proposed model compared to state-of-the-art baselines.
翻译:网络意识级联规模预测旨在通过在社交网络中模拟传播过程来预测用户生成信息的最后重置数量。根据社会影响来估计用户的重置概率,即状态激活在信息传播过程中起着重要作用。因此,能够模拟节点之间信息互动的图形神经网络(GNN)已被证明是处理这一预测任务的有效办法。但是,包括基于GNN的模型在内的现有研究通常忽视了用户偏好的一个关键因素,而这种偏好对状态的激活产生了深刻的影响。为此,我们提议了一个新的框架,通过按照三个阶段,即偏好主题生成、偏好转换模型以及社会影响激活三个阶段,促进用户偏好模式的升级,从而推广级规模预测。我们的终端到终端方法使得用户驱动信息传播过程更具适应性和准确性。关于两个大规模真实世界数据集的广泛实验清楚地表明了我们提议的模型相对于最先进的基线的有效性。