项目名称: 低峰均比编码相关数学问题研究
项目编号: No.11301406
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 王子龙
作者单位: 西安电子科技大学
项目金额: 23万元
中文摘要: 作为一种多载波调制的信号处理方法,正交频分复用技术(OFDM)已经成为第4代及未来通信关键技术之一.峰均比过高是OFDM 技术的一个重要缺点,本课题研究低峰均比编码中的数学问题,包括编码和数学两个领域的内容. 在数学方面,开创性的研究由布尔函数对应的李特尔伍德多项式在单位圆上的零点,和它在复数域上的离散傅里叶变换的谱分析, 解决标准Golay序列峰均比分布公开问题,并尝试突破甚至解决著名的平坦多项式猜想.在编码方面,从四元低峰均比编码和QAM星座图上的Golay序列组两种途径出发,在QAM星座图上设计出高码率低峰均比的序列集.
中文关键词: 布尔函数;序列;峰均比;代数组合;平坦多项式
英文摘要: Orthogonal frequency division multiplexing (OFDM) is a method of encoding digital data on multiple carrier frequencies, and has been one of the most popular scheme for 4G and further communications. One of the disadvantages of OFDM is high peak-to-average-power ratio which suffers from poor power efficiency. We study the problems related to the low PAPR coding in this project which contain problems in both math and coding area. In the area of math, we will develop a new approach on the Fourier spectral analysis for the Littlewood polynomials associated Boolean functions, and will determine the zero point on unit circle of these Littlewood polynomials. Form these new technics and theory, we will prove the open problem on the PMEPR distribution of the standard Golay sequences, and will try to prove Littlewood flat polynomial conjecture. In the area of coding, we will study low PAPR coding on QPSK, Golay array and Golay set on QAM to derive some new sequence families with low PAPR and high code rate, which can solve the PAPR problem on QAM constellation.
英文关键词: Boolean function;Sequences;PAPR;Algebraic Combinatorics;Flat polynomial