Reconstructing the evolutionary history of a set of species is a central task in computational biology. In real data, it is often the case that some information is missing: the Incomplete Directed Perfect Phylogeny (IDPP) problem asks, given a collection of species described by a set of binary characters with some unknown states, to complete the missing states in such a way that the result can be explained with a perfect directed phylogeny. Pe'er et al. proposed a solution that takes $\tilde{O}(nm)$ time for $n$ species and $m$ characters. Their algorithm relies on pre-existing dynamic connectivity data structures: a computational study recently conducted by Fern{\'a}ndez-Baca and Liu showed that, in this context, complex data structures perform worse than simpler ones with worse asymptotic bounds. This gives us the motivation to look into the particular properties of the dynamic connectivity problem in this setting, so as to avoid the use of sophisticated data structures as a blackbox. Not only are we successful in doing so, and give a much simpler $\tilde{O}(nm)$-time algorithm for the IDPP problem; our insights into the specific structure of the problem lead to an asymptotically faster algorithm, that runs in optimal $O(nm)$ time.


翻译:重新构建一组物种的进化历史是计算生物学的一项核心任务。 在实际数据中,常常会出现缺少某些信息的情况:不完全的定向完美极极极性(IDPP)问题要求,鉴于一系列由一组二进制字符描述的物种和一些未知的状态,要完成缺失的状态,这样就可以以完美的定向植物素养来解释结果。 Pe'er et al. 提议了一个需要$\tilde{O}(nm) 时间的解决方案,用于美元物种和美元字符。它们的算法依赖于先前存在的动态连接数据结构:最近由Fern_'a}Dez-Baca和Liu进行的一项计算研究显示,在此背景下,复杂的数据结构的运行状况比更简单,且有更差的线条。这使我们有动机来研究这个环境中动态连接问题的具体属性,以避免使用复杂的数据结构作为黑箱。我们不仅成功地这样做,而且给我们的快速的IMIMIQ($P) 问题带来一个更简单的时间分析。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Arxiv
0+阅读 · 2020年11月30日
Arxiv
0+阅读 · 2020年11月30日
Arxiv
0+阅读 · 2020年11月27日
Arxiv
0+阅读 · 2020年11月25日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Top
微信扫码咨询专知VIP会员