An important open question in the area of vertex sparsification is whether $(1+\epsilon)$-approximate cut-preserving vertex sparsifiers with size close to the number of terminals exist. The work Chalermsook et al. (SODA 2021) introduced a relaxation called connectivity-$c$ mimicking networks, which asks to construct a vertex sparsifier which preserves connectivity among $k$ terminals exactly up to the value of $c$, and showed applications to dynamic connectivity data structures and survivable network design. We show that connectivity-$c$ mimicking networks with $\widetilde{O}(kc^3)$ edges exist and can be constructed in polynomial time in $n$ and $c$, improving over the results of Chalermsook et al. (SODA 2021) for any $c \ge \log n$, whose runtimes depended exponentially on $c$.
翻译:在顶端封闭化领域,一个重要的未决问题是,是否存在面积接近终端数目的“Calermsook”等工作(SODA 2021)引入了所谓的连通-美元模拟网络的放松,该工作要求建造一个顶端封闭器,使美元终端的连通性保持准确到c$的值,并显示对动态连接数据结构和可生存网络设计的应用。我们显示,连接-美元模拟网络存在并可以以美元和美元建造,比Chalermsook等人(SODA 2021)的任何运行时间指数取决于C$的“美元”和“美元”(SODADA 2021)的结果有所改进。