This paper deals with improvement of linear quantile regression, when there are a few distinct values of the covariates but many replicates. On can improve asymptotic efficiency of the estimated regression coefficients by using suitable weights in quantile regression, or simply by using weighted least squares regression on the conditional sample quantiles. The asymptotic variances of the unweighted and weighted estimators coincide only in some restrictive special cases, e.g., when the density of the conditional response has identical values at the quantile of interest over the support of the covariate. The dominance of the weighted estimators is demonstrated in a simulation study, and through the analysis of a data set on tropical cyclones.
翻译:本文涉及线性微量回归的改进, 当有几种不同的共变值但有许多复制物时。 On可以通过在四分位回归中使用适当加权,或者仅仅在有条件的抽样量化中使用加权最小正方回归法,提高估计的回归系数的零点效率。 未加权和加权估算器的零点差异只在一些限制性的特殊情况下出现,例如,有条件响应的密度与共变数支持的份数具有相同的数值。加权估算器的主导地位在模拟研究中和对热带气旋数据集的分析中显示出来。