The aim of knowledge graphs is to gather knowledge about the world and provide a structured representation of this knowledge. Current knowledge graphs are far from complete. To address the incompleteness of the knowledge graphs, link prediction approaches have been developed which make probabilistic predictions about new links in a knowledge graph given the existing links. Tensor factorization approaches have proven promising for such link prediction problems. In this paper, we develop a simple tensor factorization model called SimplE, through a slight modification of the Polyadic Decomposition model from 1927. The complexity of SimplE grows linearly with the size of embeddings. The embeddings learned through SimplE are interpretable, and certain types of expert knowledge in terms of logical rules can be incorporated into these embeddings through weight tying. We prove SimplE is fully-expressive and derive a bound on the size of its embeddings for full expressivity. We show empirically that, despite its simplicity, SimplE outperforms several state-of-the-art tensor factorization techniques.
翻译:知识图形的目的是收集对世界的了解,并有条不紊地展示这种知识。当前的知识图表远未完成。为了解决知识图表的不完整问题,已经开发了链接预测方法,根据现有的链接,对知识图表中的新链接作出概率预测。 电锯系数化方法证明对这种联系预测问题很有希望。 在本文中,我们通过对1927年的Policadic分解模型稍作修改,开发了一个简单的推算模型“SimplE”。SimplE的复杂性随着嵌入的大小而线性地增长。通过SimplE所学到的嵌入过程是可以解释的,而逻辑规则方面的某些类型的专家知识可以通过重量搭配纳入这些嵌入过程。我们证明SimplE是完全表达的,并且从嵌入的大小中得出了完全直观的束缚。我们从经验上表明,尽管它很简单,但SimplE优于几种状态的数位计因因素化技术。