We study the Low Rank Phase Retrieval (LRPR) problem defined as follows: recover an $n \times q$ matrix $X^*$ of rank $r$ from a different and independent set of $m$ phaseless (magnitude-only) linear projections of each of its columns. To be precise, we need to recover $X^*$ from $y_k := |A_k{}' x^*_k|, k=1,2,\dots, q$ when the measurement matrices $A_k$ are mutually independent. Here $y_k$ is an $m$ length vector, $A_k$ is an $n \times m$ matrix, and $'$ denotes matrix transpose. The question is when can we solve LRPR with $m \ll n$? A reliable solution can enable fast and low-cost phaseless dynamic imaging, e.g., Fourier ptychographic imaging of live biological specimens. In this work, we develop the first provably correct approach for solving this LRPR problem. Our proposed algorithm, Alternating Minimization for Low-Rank Phase Retrieval (AltMinLowRaP), is an AltMin based solution and hence is also provably fast (converges geometrically). Our guarantee shows that AltMinLowRaP solves LRPR to $\epsilon$ accuracy, with high probability, as long as $m q \ge C n r^4 \log(1/\epsilon)$, the matrices $A_k$ contain i.i.d. standard Gaussian entries, and the right singular vectors of $X^*$ satisfy the incoherence assumption from matrix completion literature. Here $C$ is a numerical constant that only depends on the condition number of $X^*$ and on its incoherence parameter. Its time complexity is only $ C mq nr \log^2(1/\epsilon)$. Since even the linear (with phase) version of the above problem is not fully solved, the above result is also the first complete solution and guarantee for the linear case. Finally, we also develop a simple extension of our results for the dynamic LRPR setting.


翻译:我们研究的是低级阶段Retrieval (RRPR) 问题的定义如下: 当测量矩阵 $A_k$是相互独立的时, 我们需要从每列的无级( 微量) 线性预测中回收 $n q q 美元 q 美元 q 美元 q 美元 q 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 线性预测每列。 确切地说, 我们何时能用 $ 美元 = k = = = = = = k k k = = = = = = = = = = = 1,\,\ o four i si si cial = max max or fro or listal magime or or or or or or laxn lax lax lax lax the lival le list list list list listal list list list list list list list ligal listm listm ligal listm listm listm listmmmm la la la la la la list mod la la la la la la la la la la la la la la la la la la mod mod la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la li

0
下载
关闭预览

相关内容

【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
51+阅读 · 2020年8月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月19日
Arxiv
0+阅读 · 2021年1月18日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
51+阅读 · 2020年8月16日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员