We study the Low Rank Phase Retrieval (LRPR) problem defined as follows: recover an $n \times q$ matrix $X^*$ of rank $r$ from a different and independent set of $m$ phaseless (magnitude-only) linear projections of each of its columns. To be precise, we need to recover $X^*$ from $y_k := |A_k{}' x^*_k|, k=1,2,\dots, q$ when the measurement matrices $A_k$ are mutually independent. Here $y_k$ is an $m$ length vector, $A_k$ is an $n \times m$ matrix, and $'$ denotes matrix transpose. The question is when can we solve LRPR with $m \ll n$? A reliable solution can enable fast and low-cost phaseless dynamic imaging, e.g., Fourier ptychographic imaging of live biological specimens. In this work, we develop the first provably correct approach for solving this LRPR problem. Our proposed algorithm, Alternating Minimization for Low-Rank Phase Retrieval (AltMinLowRaP), is an AltMin based solution and hence is also provably fast (converges geometrically). Our guarantee shows that AltMinLowRaP solves LRPR to $\epsilon$ accuracy, with high probability, as long as $m q \ge C n r^4 \log(1/\epsilon)$, the matrices $A_k$ contain i.i.d. standard Gaussian entries, and the right singular vectors of $X^*$ satisfy the incoherence assumption from matrix completion literature. Here $C$ is a numerical constant that only depends on the condition number of $X^*$ and on its incoherence parameter. Its time complexity is only $ C mq nr \log^2(1/\epsilon)$. Since even the linear (with phase) version of the above problem is not fully solved, the above result is also the first complete solution and guarantee for the linear case. Finally, we also develop a simple extension of our results for the dynamic LRPR setting.


翻译:我们研究的是低级阶段Retrieval (RRPR) 问题的定义如下: 当测量矩阵 $A_k$是相互独立的时, 我们需要从每列的无级( 微量) 线性预测中回收 $n q q 美元 q 美元 q 美元 q 美元 q 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 线性预测每列。 确切地说, 我们何时能用 $ 美元 = k = = = = = = k k k = = = = = = = = = = = 1,\,\ o four i si si cial = max max or fro or listal magime or or or or or or laxn lax lax lax lax the lival le list list list list listal list list list list list list list ligal listm listm ligal listm listm listm listmmmm la la la la la la list mod la la la la la la la la la la la la la la la la la la mod mod la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la li

0
下载
关闭预览

相关内容

Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员