In this thesis, we present new techniques to deal with fundamental algorithmic graph problems where graphs are directed and partially dynamic, i.e. undergo either a sequence of edge insertions or deletions: - Single-Source Reachability (SSR), - Strongly-Connected Components (SCCs), and - Single-Source Shortest Paths (SSSP). These problems have recently received an extraordinary amount of attention due to their role as subproblems in various more complex and notoriously hard graph problems, especially to compute flows, bipartite matchings and cuts. Our techniques lead to the first near-optimal data structures for these problems in various different settings. Letting $n$ denote the number of vertices in the graph and by $m$ the maximum number of edges in any version of the graph, we obtain - the first randomized data structure to maintain SSR and SCCs in near-optimal total update time $\tilde{O}(m)$ in a graph undergoing edge deletions. - the first randomized data structure to maintain SSSP in partially dynamic graphs in total update time $\tilde{O}(n^2)$ which is near-optimal in dense graphs. - the first deterministic data structures for SSR and SCC for graphs undergoing edge deletions, and for SSSP in partially dynamic graphs that improve upon the $O(mn)$ total update time by Even and Shiloach from 1981 that is often considered to be a fundamental barrier.
翻译:在本论文中,我们提出了处理基本算法图表问题的新技术,其中图形是定向和部分动态的,即,在不同的设置中,先进行一系列边缘插入或删除: - 单一源可达性(SSR),后进行强烈连接的构件(SCCs)和 - 单一源最短路径(SSSP)。这些问题最近由于在各种更复杂和臭名昭著的硬图形问题中作为子问题的作用而得到了极大的关注,特别是用来计算流、双方匹配和切除。我们的技术导致在不同的设置中为这些问题建立第一个接近最佳的数据结构。在图形中,以美元表示单源可达(SSR),然后以美元表示在任何版本中的最大边缘数,我们获得的是第一个随机的数据结构,以在接近最优化的总更新时间 $tilde{O} (m) 在一个正在边缘删除的图表中,第一个随机数据结构是将SSSP$(SISP) 总动态数据结构中保持部分最佳的数据结构,在不断更新的 AS&Qr平面图中,在不断更新的正态中,在不断更新的正态中,在不断更新的 AS&25中,在直径平平平平平平平平的平平平平平平平平平平的平的平平平平平平平平平。