A locating-dominating set $D$ of a graph $G$ is a dominating set of $G$ where each vertex not in $D$ has a unique neighborhood in $D$, and the Locating-Dominating Set problem asks if $G$ contains such a dominating set of bounded size. This problem is known to be $\mathsf{NP-hard}$ even on restricted graph classes, such as interval graphs, split graphs, and planar bipartite subcubic graphs. On the other hand, it is known to be solvable in polynomial time for some graph classes, such as trees and, more generally, graphs of bounded cliquewidth. While these results have numerous implications on the parameterized complexity of the problem, little is known in terms of kernelization under structural parameterizations. In this work, we begin filling this gap in the literature. Our first result shows that Locating-Dominating Set is $\mathsf{W}[1]-\mathsf{hard}$ when parameterized by the size of a minimum clique cover. We present an exponential kernel for the distance to cluster parameterization and show that, unless $\mathsf{NP} \subseteq \mathsf{coNP/poly}$, no polynomial kernel exists for Locating-Dominating Set when parameterized by vertex cover nor when parameterized by distance to clique. We then turn our attention to parameters not bounded by either of the previous two, and exhibit a linear kernel when parameterizing by the max leaf number; in this context, we leave the parameterization by feedback edge set as the primary open problem in our study.
翻译:以G$表示的定位定值 $D$G$是一个代表 $G$的参数 。 另一方面,如果每个不是以$为单位的顶点在多诺米亚时间里以美元为单位,而定位定位设定问题询问$G$是否包含这样一套受限制的尺寸。 这个问题已知为$mathsf{NP-hard} 美元, 甚至在一些限制的图形类别上也是如此。 例如间隙图、 分裂图和平面双面亚立方形图等。 另一方面, 已知在某种参数类别(如树和(更一般而言)的定界曲线图)中,每条顶点的顶点值值值是 $G$G$ 。 在结构参数化时,我们开始填补文献中的这个空白。 我们的第一个结果显示, 当我们开始以以美元为单位的开放, 当我们目前不以直线度值 的离位值, 当我们以最小的距离显示我们之前的内位值时, 当我们以 的内位值显示一个最小的内位值时, 当我们目前 的内层的内值时, 当我们以正位化 的内 的内值为一个比值 。