A garden $G$ is populated by $n\ge 1$ bamboos $b_1, b_2, ..., b_n$ with the respective daily growth rates $h_1 \ge h_2 \ge \dots \ge h_n$. It is assumed that the initial heights of bamboos are zero. The robotic gardener maintaining the garden regularly attends bamboos and trims them to height zero according to some schedule. The Bamboo Garden Trimming Problem (BGT) is to design a perpetual schedule of cuts to maintain the elevation of the bamboo garden as low as possible. The bamboo garden is a metaphor for a collection of machines which have to be serviced, with different frequencies, by a robot which can service only one machine at a time. The objective is to design a perpetual schedule of servicing which minimizes the maximum (weighted) waiting time for servicing. We consider two variants of BGT. In discrete BGT the robot trims only one bamboo at the end of each day. In continuous BGT the bamboos can be cut at any time, however, the robot needs time to move from one bamboo to the next. For discrete BGT, we show a simple $4$-approximation algorithm and, by exploiting relationship between BGT and the classical Pinwheel scheduling problem, we derive a $2$-approximation algorithm for the general case and a tighter approximation when the growth rates are balanced. A by-product of this last approximation algorithm is that it settles one of the conjectures about the Pinwheel problem. For continuous BGT, we propose approximation algorithms which achieve approximation ratios $O(\log (h_1/h_n))$ and $O(\log n)$.
翻译:园艺 $G$ 由 $\ ge 1, b_ 2,..., b_n美元 以相应的日增长率 $h_ 1\ ge h_ 2\ ge\ dots\ ge h_ n$. 假设竹子的初始高度为零。 维护园艺的机器人园丁经常使用竹子并将竹子修剪成高度为零。 竹子园三角问题 (BGT) 是要设计一个永久的切削计划, 以尽可能低的竹艺园。 竹子园是一组机器的比喻, 这些机器必须用不同的频率服务。 其初衷为竹子高度为零。 维护园艺的机械园丁园园园园园园园园园园园园园园园园园园园园园园园园园园园的最初高度为零, 。 在离乡园园园园园园园园园区里, 问题要设计一个固定的削减时间, 以尽可能低。 在连续的竹园艺中, 可以在任何时间削减, 但是, ro园园园园园园园园园园园园园艺的比 将持续地 以一个最接近的基的基 价格, 将我们从一个最短的基 的 的 的 的 的 开始 将 的 的 的 的 的 的 的 的 的 的 以 的 的 的 的 水平 水平 水平 。