This work presents a numerical formulation to model isotropic viscoelastic material behavior for membranes and thin shells. The surface and the shell theory are formulated within a curvilinear coordinate system, which allows the representation of general surfaces and deformations. The kinematics follow from Kirchhoff-Love theory and the discretization makes use of isogeometric shape functions. A multiplicative split of the surface deformation gradient is employed, such that an intermediate surface configuration is introduced. The surface metric and curvature of this intermediate configuration follow from the solution of nonlinear evolution laws - ordinary differential equations (ODEs) - that stem from a generalized viscoelastic solid model. The evolution laws are integrated numerically with the implicit Euler scheme and linearized within the Newton-Raphson scheme of the nonlinear finite element framework. The implementation of surface and bending viscosity is verified with the help of analytical solutions and shows ideal convergence behavior. The chosen numerical examples capture large deformations and typical viscoelasticity behavior, such as creep, relaxation, and strain rate dependence. It is shown that the proposed formulation can also be straightforwardly applied to model boundary viscoelasticity of 3D bodies.
翻译:这项工作为膜和薄壳提供了一种用于模拟等离子色相对弹性物质行为的数值配方。 表面和贝壳理论是在曲线坐标系统内形成的, 该系统可以代表一般表面和变形。 运动学学理论来自Kirchhoff- Love 理论, 离散化则使用异形形状功能。 采用了表层变形梯度的多倍分解, 从而引入了中间表面配置。 这种中间结构的表面计量和曲度来自非线性演化法的解决方案―― 普通差异方程式(ODEs) - 由普遍粘结性固态模型产生。 进化法在数字上与隐含的 Euler 方案相结合, 并在非线性定质元素框架的 Newton- Raphson 方案内线性化。 地表和弯曲粘合度的落实在分析解决方案的帮助下得到验证, 并显示理想的趋同行为。 所选的数字示例来自非线性演化法的大规模变形和典型的粘性行为, 如爬、 和压力度- D 度依赖性模型。 显示, 3 直线性 的配制还被应用为直度。