We study the stability of posterior predictive inferences to the specification of the likelihood model and perturbations of the data generating process. In modern big data analyses, the decision-maker may elicit useful broad structural judgements but a level of interpolation is required to arrive at a likelihood model. One model, often a computationally convenient canonical form, is chosen, when many alternatives would have been equally consistent with the elicited judgements. Equally, observational datasets often contain unforeseen heterogeneities and recording errors. Acknowledging such imprecisions, a faithful Bayesian analysis should be stable across reasonable equivalence classes for these inputs. We show that traditional Bayesian updating provides stability across a very strict class of likelihood models and DGPs, while a generalised Bayesian alternative using the beta-divergence loss function is shown to be stable across practical and interpretable neighbourhoods. We illustrate this in linear regression, binary classification, and mixture modelling examples, showing that stable updating does not compromise the ability to learn about the DGP. These stability results provide a compelling justification for using generalised Bayes to facilitate inference under simplified canonical models.
翻译:我们研究了数据生成过程的概率模型和扰动性参数规格的后天预测推论的稳定性。在现代大数据分析中,决策者可能引出有用的广泛结构判断,但需要一定程度的内插才能得出一个可能性模型。选择了一个模型,往往是计算上方便的圆形模型,而许多替代方法与所得出的判断同样一致。同样,观测数据集往往包含意外的偏差和记录错误。承认这种不准确性,忠实的贝耶西亚分析应在合理的等同类别中为这些投入提供稳定性。我们表明,传统的巴耶西亚更新为非常严格的概率模型和DGP提供了稳定性,而使用乙型引力损失功能的泛泛泛的巴耶斯替代方法在实际和可解释的居民区中都具有稳定性。我们用线性回归、二元分类和混合物建模实例来说明这一点,表明稳定的更新不会损害了解DGP的能力。这些稳定性结果为在简化的卡通模型下使用通用贝斯系统便利推断提供了令人信服的理由。