Classical quickest change detection algorithms require modeling pre-change and post-change distributions. Such an approach may not be feasible for various machine learning models because of the complexity of computing the explicit distributions. Additionally, these methods may suffer from a lack of robustness to model mismatch and noise. This paper develops a new variant of the classical Cumulative Sum (CUSUM) algorithm for the quickest change detection. This variant is based on Fisher divergence and the Hyv\"arinen score and is called the Score-based CUSUM (SCUSUM) algorithm. The SCUSUM algorithm allows the applications of change detection for unnormalized statistical models, i.e., models for which the probability density function contains an unknown normalization constant. The asymptotic optimality of the proposed algorithm is investigated by deriving expressions for average detection delay and the mean running time to a false alarm. Numerical results are provided to demonstrate the performance of the proposed algorithm.
翻译:古老的快速变化检测算法需要建模变化前和变化后分布模型。 这种方法对于各种机器学习模型可能不可行, 因为计算清晰分布的过程复杂。 此外, 这些方法可能缺乏模型不匹配和噪音的稳健性。 本文开发了用于最快速变化检测的古典累积算法( CUSUM) 的新变体。 这个变体基于Fisher 差异和 Hyv\'arinen 分, 称为基于分数的 CUSUM 算法( SCUSUM) 。 SCUSUM 算法允许将变化检测应用到不规范的统计模型中, 即概率密度函数包含未知的正常化常数的模型中。 对拟议算法的零现性最佳性进行调查, 其方法是得出平均检测延迟的表达方式和错误警报的平均运行时间。 提供数字结果以显示拟议算法的性能 。