Ecologists increasingly rely on Bayesian methods to fit capture-recapture models. Capture-recapture models are used to estimate abundance while accounting for imperfect detectability in individual-level data. A variety of implementations exist for such models, including integrated likelihood, parameter-expanded data augmentation, and combinations of those. Capture-recapture models with latent random effects can be computationally intensive to fit using conventional Bayesian algorithms. We identify alternative specifications of capture-recapture models by considering a conditional representation of the model structure. The resulting alternative model can be specified in a way that leads to more stable computation and allows us to fit the desired model in stages while leveraging parallel computing resources. Our model specification includes a component for the capture history of detected individuals and another component for the sample size which is random before observed. We demonstrate this approach using three examples including simulation and two data sets resulting from capture-recapture studies of different species.
翻译:生态学家越来越依赖贝耶斯方法来适应捕获-捕获-捕获模型。 捕获- 回收模型用来估计丰度,同时计算个人数据中的不完全可探测性。 这些模型有各种不同的实施,包括综合可能性、参数扩展数据增强和这些模型的组合。 具有潜在随机效应的捕获- 捕获模型可以进行密集的计算,以适应传统的巴耶斯算法。 我们考虑对模型结构进行有条件的描述,从而确定捕获- 捕获模型的替代规格。 由此产生的替代模型可以指定出更稳定的计算方式,使我们能够在利用平行计算资源的同时将理想模型分阶段匹配。 我们的模型规格包括被检测到的个人的捕捉史的组成部分,以及之前随机观察到的样本大小的另一个组成部分。 我们用三个例子,包括模拟和两个不同物种的捕获-捕获-捕获研究产生的数据集,来展示这一方法。