This paper addresses the challenge of processing long documents using generative transformer models. To evaluate different approaches, we introduce BABILong, a new benchmark designed to assess model capabilities in extracting and processing distributed facts within extensive texts. Our evaluation, which includes benchmarks for GPT-4 and RAG, reveals that common methods are effective only for sequences up to $10^4$ elements. In contrast, fine-tuning GPT-2 with recurrent memory augmentations enables it to handle tasks involving up to $10^7$ elements. This achievement marks a substantial leap, as it is by far the longest input processed by any open neural network model to date, demonstrating a significant improvement in the processing capabilities for long sequences.
翻译:暂无翻译