In this paper, we propose a variance reduction approach for Markov chains based on additive control variates and the minimization of an appropriate estimate for the asymptotic variance. We focus on the particular case when control variates are represented as deep neural networks. We derive the optimal convergence rate of the asymptotic variance under various ergodicity assumptions on the underlying Markov chain. The proposed approach relies upon recent results on the stochastic errors of variance reduction algorithms and function approximation theory.
翻译:在本文中,我们提出了一种基于添加控制变量和最小化适当的渐近方差估计的马尔可夫链方差缩小方法。我们专注于控制变量被表示为深度神经网络的特定情况。我们在潜在的马尔可夫链的各种遍历性假设下,导出了渐近方差的最优收敛速度。所提出的方法依赖于方差缩小算法和函数逼近理论的最新结果。