项目名称: 几类非线性微分方程的变分和拓扑方法研究
项目编号: No.11501318
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 郝新安
作者单位: 曲阜师范大学
项目金额: 18万元
中文摘要: 本项目利用变分方法和拓扑方法研究拟线性薛定谔方程和Banach空间无穷区间上脉冲微分方程解的存在性和解的性质。主要内容包括:1、势函数在某些区域上可取负值的情况下,通过建立新的极大极小理论并结合下降流不变集方法等研究拟线性薛定谔方程非线性项超线性增长、渐近线性增长时解的存在性、多重性和解的性质等;2、利用变分方法、非紧性测度、不动点理论和拓扑方法,研究Banach空间无穷区间上脉冲微分方程解的存在性和解的性质。本课题对发展和完善非线性泛函分析理论和方法,拓宽变分方法和拓扑方法在各种非线性微分方程中的应用范围,并对应用数学和数学物理中的非线性问题的研究都具有重要意义。
中文关键词: 变分方法;拟线性薛定谔方程;拓扑方法;脉冲微分方程
英文摘要: We use variational and topological methods to study the existence results and the properties of solutions for quasilinear Schrödinger equations and impulsive differential equations defined on infinite interval in Banach spaces. The main contents include: 1. In the case of potential is sign-changing and may be negative, by establishing new minimax principle and using invariant sets of descent flows, we study the existence, mulitiplicity and properties of solutions for quasilinear Schrödinger equations involving superlinear growth and asymptotically linear growth. 2. By using the variational methods, measure of noncompactness, fixed point theory and topological methods, we concern the existence results and properties of solutions for impulsive differential equations defined on infinite interval in Banach spaces. The subject widen the applications of variational and topological methods in nonlinear differential equations. It is of great significance to the improvement and development of the theory and methods of nonlinear functional analysis and the study of applied mathematics and nonlinear problems in mathematical physics.
英文关键词: Variational methods;Quasilinear Schrödinger equation; Topological methods ;Impulsive differential equation