In this work, we compare the performance of the Quantum Approximate Optimization Algorithm (QAOA) with state-of-the-art classical solvers such as Gurobi and MQLib to solve the combinatorial optimization problem MaxCut on 3-regular graphs. The goal is to identify under which conditions QAOA can achieve "quantum advantage" over classical algorithms, in terms of both solution quality and time to solution. One might be able to achieve quantum advantage on hundreds of qubits and moderate depth $p$ by sampling the QAOA state at a frequency of order 10 kHz. We observe, however, that classical heuristic solvers are capable of producing high-quality approximate solutions in $\textit{linear}$ time complexity. In order to match this quality for $\textit{large}$ graph sizes $N$, a quantum device must support depth $p>11$. Otherwise, we demonstrate that the number of required samples grows exponentially with $N$, hindering the scalability of QAOA with $p\leq11$. These results put challenging bounds on achieving quantum advantage for QAOA MaxCut on 3-regular graphs. Other problems, such as different graphs, weighted MaxCut, maximum independent set, and 3-SAT, may be better suited for achieving quantum advantage on near-term quantum devices.


翻译:在这项工作中,我们比较了Quantum Aprear Apropimization Alogorithm(QAOA)的性能,把QAOA(QAOA)的性能与Gorobi和MQLib等最先进的古典解答器(MQLib)的性能进行比较,以在3个普通图表中解决组合优化问题MaxCut MaxCut。我们的目标是确定QAOA在什么条件下能够达到优于经典算法的“等量优势 ”, 即溶液质量和溶解时间。也许能够以10千赫的频率对QA(QA)进行抽样抽样抽样,从而达到最高量值10千赫的频率。然而,我们发现古典超额解答题解答题者能够以$tlut{linearar}时间复杂度生成高质量的近质量解决方案。为了将$trout{ group $>11, 量设备必须支持深度为1美元。否则,我们证明所需的样品数量会以1N美元快速增长,从而无法在3AArbalalalalalalalalalalalalalalal as ass ass roup.

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Local search for efficient causal effect estimation
Arxiv
0+阅读 · 2022年7月22日
Arxiv
0+阅读 · 2022年7月21日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员