项目名称: Levy过程驱动的随机Fast-Diffusion方程的Harnack不等式及其应用

项目编号: No.11126079

项目类型: 专项基金项目

立项/批准年度: 2012

项目学科: 生物科学

项目作者: 周国立

作者单位: 重庆大学

项目金额: 3万元

中文摘要: 随机偏微分方程是 随机微分方程理论研究的深化,也是当今随机分析研究的热点之一。尤其是涉及到扩散等有深刻物理,化学,生物背景的随机偏微分方程,有极为重要的理论和实际意义。在扩散过程同时独立地受到连续和间断的两类噪声的影响下,其动力学行为会发生什么样的变化,是这个课题研究的主要问题。该问题的研究,不仅对物理,化学,生物本身有重要的理论和实际意义,对深入理解和研究无穷维随机动力系统,也会有重要的帮助。具体的讲,本项目主要研究: 由Levy 过程驱动的随机Fast-Diffusion方程的Harnack不等式及其应用。

中文关键词: 2维随机Burgers方程;随机KdV-BO方程;适定性;吸引子;遍历性

英文摘要:

英文关键词: 2d stochastic Burgers equation;stochastic KdV-BO equation;well posedness;ergodicity;attractor

成为VIP会员查看完整内容
0

相关内容

【干货书】面向工程师的随机过程,448页pdf
专知会员服务
80+阅读 · 2021年11月3日
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
137+阅读 · 2021年3月5日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
62+阅读 · 2020年11月14日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
152+阅读 · 2020年8月27日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
专知会员服务
62+阅读 · 2020年3月4日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
【经典书】信息论与统计: 教程,116页pdf
专知
2+阅读 · 2021年3月27日
【干货书】贝叶斯推断随机过程,449页pdf
专知
29+阅读 · 2020年8月27日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
干货:复杂网络及其应用简介
数据猿
25+阅读 · 2018年12月21日
酒鬼漫步的数学——随机过程 | 张天蓉专栏
知识分子
10+阅读 · 2017年8月13日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
小贴士
相关主题
相关VIP内容
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员