In this paper, a higher order finite difference scheme is proposed for Generalized Fractional Diffusion Equations (GFDEs). The fractional diffusion equation is considered in terms of the generalized fractional derivatives (GFDs) which uses the scale and weight functions in the definition. The GFD reduces to the Riemann-Liouville, Caputo derivatives and other fractional derivatives in a particular case. Due to importance of the scale and the weight functions in describing behaviour of real-life physical systems, we present the solutions of the GFDEs by considering various scale and weight functions. The convergence and stability analysis are also discussed for finite difference scheme (FDS) to validate the proposed method. We consider test examples for numerical simulation of FDS to justify the proposed numerical method.
翻译:在本文中,为通用分数扩散分布式(GFDEs)提出了一个更高的定级有限差异办法,分数扩散方程式是按通用的分数衍生物(GFDs)来考虑的,后者使用定义中的规模和重量函数;GFD减少至里曼-利乌维尔、卡普托衍生物和其他分数衍生物(在特定情况下),由于规模和权重功能在描述实际物理系统行为方面的重要性,我们通过考虑各种规模和权重功能来介绍GFDEs的解决方案;还讨论有限差异计划(FDS)的趋同和稳定性分析,以验证拟议方法;我们考虑对FDS进行数字模拟的试验实例,以证明拟议数字方法的合理性。