The Volume-Averaged Navier-Stokes equations are used to study fluid flow in the presence of fixed or moving solids such as packed or fluidized beds. We develop a high-order finite element solver using both forms A and B of these equations. We introduce tailored stabilization techniques to prevent oscillations in regions of sharp gradients, to relax the Ladyzhenskaya-Babuska-Brezzi inf-sup condition, and to enhance the local mass conservation and the robustness of the formulation. We calculate the void fraction using the Particle Centroid Method. Using different drag models, we calculate the drag force exerted by the solids on the fluid. We implement the method of manufactured solution to verify our solver. We demonstrate that the model preserves the order of convergence of the underlying finite element discretization. Finally, we simulate gas flow through a randomly packed bed and study the pressure drop and mass conservation properties to validate our model.
翻译:以卷态变换的纳维-斯托克斯方程式用于在固定或移动固体(如包装床或液化床)的情况下研究流体流。我们使用这些方程式的表A和表B开发了高阶有限元素解析器。我们采用量身定做的稳定化技术,以防止在尖梯度区域发生振动,放松Ladyzhenskaya-Busska-Brezzi的悬浮状态,并加强当地质量保护和配方的稳健性。我们使用粒子中位法计算无效的分数。我们使用不同的拖动模型计算液态固态的拖力。我们使用制造的解法来验证我们的解析器。我们证明该模型保持了基本有限元素分解的趋同顺序。最后,我们模拟气体通过随机包装的床流,并研究压力滴和质量保护特性以验证我们的模型。