We propose a two-stage method called \textit{Spline Assisted Partial Differential Equation based Model Identification (SAPDEMI)} to identify partial differential equation (PDE)-based models from noisy data. In the first stage, we employ the cubic splines to estimate unobservable derivatives. The underlying PDE is based on a subset of these derivatives. This stage is computationally efficient: its computational complexity is a product of a constant with the sample size; this is the lowest possible order of computational complexity. In the second stage, we apply the Least Absolute Shrinkage and Selection Operator (Lasso) to identify the underlying PDE-based model. Statistical properties are developed, including the model identification accuracy. We validate our theory through various numerical examples and a real data case study. The case study is based on a National Aeronautics and Space Administration (NASA) data set.
翻译:我们建议采用称为\textit{Spline 辅助部分差异化模型识别(SAPDEMI)的两阶段方法,从噪音数据中找出部分差异方程(PDEE)模型。 在第一阶段,我们使用立方体样条来估计不可观测衍生物。基础的PDE基于这些衍生物的一个子集。这个阶段是计算效率的:其计算复杂性与样本大小是一个恒定的产物;这是计算复杂程度最低的;在第二阶段,我们采用最小绝对缩小和选择操作员(Lasso)来确定基于PDE的模型。我们开发了统计属性,包括模型识别准确性。我们通过各种数字示例和真实数据案例研究验证了我们的理论。案例研究以国家航空航天局(NASA)的数据集为基础。</s>