In this paper we propose an active metric learning method for clustering with pairwise constraints. The proposed method actively queries the label of informative instance pairs, while estimating underlying metrics by incorporating unlabeled instance pairs, which leads to a more accurate and efficient clustering process. In particular, we augment the queried constraints by generating more pairwise labels to provide additional information in learning a metric to enhance clustering performance. Furthermore, we increase the robustness of metric learning by updating the learned metric sequentially and penalizing the irrelevant features adaptively. In addition, we propose a novel active query strategy that evaluates the information gain of instance pairs more accurately by incorporating the neighborhood structure, which improves clustering efficiency without extra labeling cost. In theory, we provide a tighter error bound of the proposed metric learning method utilizing augmented queries compared with methods using existing constraints only. Furthermore, we also investigate the improvement using the active query strategy instead of random selection. Numerical studies on simulation settings and real datasets indicate that the proposed method is especially advantageous when the signal-to-noise ratio between significant features and irrelevant features is low.


翻译:在本文中,我们建议采用一种积极的衡量学习方法,在使用对口限制进行分组时,我们建议采用一种积极的衡量方法。拟议方法积极询问信息实例配对的标签,同时通过纳入无标签实例配对来估计基本衡量标准,从而导致一个更准确和高效的分组过程。特别是,我们通过生成更多的对口标签来提供补充信息,以学习一种衡量方法来提高组合性能。此外,我们通过按顺序更新所学的衡量标准,并适应性地惩罚不相干的特点,来提高衡量标准学习的可靠性。此外,我们提出了一个新的积极查询战略,通过纳入邻里结构来更准确地评估实例配对的信息收益,这样可以提高组合效率而无需额外标签成本。理论上,我们提供了一种更严格的错误,即拟议采用比仅使用现有限制的方法来增加查询的方法。此外,我们还利用主动查询战略而不是随机选择来调查改进了计量方法。关于模拟设置和真实数据集的量化研究表明,在重要特征和不相干的特点之间的信号到噪音比率低时,拟议方法特别有利。

0
下载
关闭预览

相关内容

度量学习的目的为了衡量样本之间的相近程度,而这也正是模式识别的核心问题之一。大量的机器学习方法,比如K近邻、支持向量机、径向基函数网络等分类方法以及K-means聚类方法,还有一些基于图的方法,其性能好坏都主要有样本之间的相似度量方法的选择决定。 度量学习通常的目标是使同类样本之间的距离尽可能缩小,不同类样本之间的距离尽可能放大。
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
55+阅读 · 2019年11月10日
浅谈主动学习(Active Learning)
凡人机器学习
30+阅读 · 2020年6月18日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月5日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
LibRec 每周算法:Collaborative Metric Learning (WWW'17)
LibRec智能推荐
6+阅读 · 2017年7月4日
Arxiv
14+阅读 · 2020年12月17日
Hardness-Aware Deep Metric Learning
Arxiv
6+阅读 · 2019年3月13日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
浅谈主动学习(Active Learning)
凡人机器学习
30+阅读 · 2020年6月18日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月5日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
LibRec 每周算法:Collaborative Metric Learning (WWW'17)
LibRec智能推荐
6+阅读 · 2017年7月4日
相关论文
Top
微信扫码咨询专知VIP会员