The task of temporal grounding aims to locate video moment in an untrimmed video, with a given sentence query. This paper for the first time investigates some superficial biases that are specific to the temporal grounding task, and proposes a novel targeted solution. Most alarmingly, we observe that existing temporal ground models heavily rely on some biases (e.g., high preference on frequent concepts or certain temporal intervals) in the visual modal. This leads to inferior performance when generalizing the model in cross-scenario test setting. To this end, we propose a novel method called Debiased Temporal Language Localizer (DebiasTLL) to prevent the model from naively memorizing the biases and enforce it to ground the query sentence based on true inter-modal relationship. Debias-TLL simultaneously trains two models. By our design, a large discrepancy of these two models' predictions when judging a sample reveals higher probability of being a biased sample. Harnessing the informative discrepancy, we devise a data re-weighing scheme for mitigating the data biases. We evaluate the proposed model in cross-scenario temporal grounding, where the train / test data are heterogeneously sourced. Experiments show large-margin superiority of the proposed method in comparison with state-of-the-art competitors.
翻译:时间地基任务旨在将视频时刻定位在未剪裁的视频中, 带有给定的句子查询。 本文首次调查一些与时间地基任务特有的表面偏差, 并提出新的有针对性的解决方案。 最令人震惊的是, 我们观察到现有的时间地基模型在视觉模型中严重依赖某些偏差( 例如, 高度偏爱频繁的概念或某些时间间隔 ) 。 这导致在跨情景测试设置中将模型概括为偏差时的性能较差。 为此, 我们提出一种名为 Debiased Temalal语言本地化器( DebiasTLLL) 的新颖方法, 以防止该模型天真地模拟偏见, 并强制它以真正的模式间关系为基础进行查询句。 Debias- TLLL同时训练两种模型。 根据我们的设计, 在判断样本时, 这两种模型的预测有很大差异, 显示存在偏差的概率更高。 利用信息差异, 我们设计了一个数据重新比对减轻数据偏差的方案。 我们评估了跨时间基模型中的拟议模型, 将实验性地基比重显示高度数据测试源/ 。