In recommender systems, cold-start issues are situations where no previous events, e.g. ratings, are known for certain users or items. In this paper, we focus on the item cold-start problem. Both content information (e.g. item attributes) and initial user ratings are valuable for seizing users' preferences on a new item. However, previous methods for the item cold-start problem either 1) incorporate content information into collaborative filtering to perform hybrid recommendation, or 2) actively select users to rate the new item without considering content information and then do collaborative filtering. In this paper, we propose a novel recommendation scheme for the item cold-start problem by leverage both active learning and items' attribute information. Specifically, we design useful user selection criteria based on items' attributes and users' rating history, and combine the criteria in an optimization framework for selecting users. By exploiting the feedback ratings, users' previous ratings and items' attributes, we then generate accurate rating predictions for the other unselected users. Experimental results on two real-world datasets show the superiority of our proposed method over traditional methods.
翻译:在推荐者系统中,冷启动问题是指某些用户或项目没有了解以前的任何事件的情况,例如评级;在本文件中,我们侧重于项目冷启动问题;内容信息(例如项目属性)和初始用户评级都对抓住用户对新项目的偏好很有价值;然而,以往的项目冷启动问题的方法是:1)将内容信息纳入合作过滤中,以实施混合建议;或2)积极选择用户在不考虑内容信息的情况下对新项目进行评级,然后进行协作过滤;在本文件中,我们为项目冷启动问题提出了一个新的建议方案,利用主动学习和项目属性信息。具体地说,我们根据项目属性和用户评级历史设计有用的用户选择标准,并将选择用户的标准纳入优化框架;通过利用反馈评级、用户先前的评级和项目属性,我们随后为其他未选定的用户作出准确的评级预测。两个真实世界数据集的实验结果显示我们拟议方法优于传统方法。