We introduce the MAsked Generative VIdeo Transformer, MAGVIT, to tackle various video synthesis tasks with a single model. We introduce a 3D tokenizer to quantize a video into spatial-temporal visual tokens and propose an embedding method for masked video token modeling to facilitate multi-task learning. We conduct extensive experiments to demonstrate the quality, efficiency, and flexibility of MAGVIT. Our experiments show that (i) MAGVIT performs favorably against state-of-the-art approaches and establishes the best-published FVD on three video generation benchmarks, including the challenging Kinetics-600. (ii) MAGVIT outperforms existing methods in inference time by two orders of magnitude against diffusion models and by 60x against autoregressive models. (iii) A single MAGVIT model supports ten diverse generation tasks and generalizes across videos from different visual domains. The source code and trained models will be released to the public at https://magvit.cs.cmu.edu.
翻译:我们提出了一种名为带蒙版生成视频 Transformer 的模型 MAGVIT,可用于解决各种视频合成任务。我们引入三维 tokenizer,将视频量化为时空视觉标记,并提出了一种嵌入方法来处理蒙版视频标记,以促进多任务学习。我们进行了广泛的实验来展示 MAGVIT 的质量、效率和灵活性。我们的实验表明:(i)MAGVIT 在三个视频生成基准测试中表现优异,与最先进的方法相比,取得了最佳的 FVD,包括具有挑战性的 Kinetics-600(该数据集包含 600 种行动类别和 500k 个视频)。(ii)MAGVIT 的推理时间比扩散模型快两个数量级,并比自回归模型快 60 倍。(iii)单个MAGVIT模型支持十种不同的生成任务,并能够推广到来自不同视觉领域的视频。源代码和训练模型将在https://magvit.cs.cmu.edu向公众开放。