Consider the likelihood ratio test (LRT) statistics for the independence of sub-vectors from a $p$-variate normal random vector. We are devoted to deriving the limiting distributions of the LRT statistics based on a random sample of size $n$. It is well known that the limit is chi-square distribution when the dimension of the data or the number of the parameters are fixed. In a recent work by Qi, Wang and Zhang (Ann Inst Stat Math (2019) 71: 911--946), it was shown that the LRT statistics are asymptotically normal under condition that the lengths of the normal random sub-vectors are relatively balanced if the dimension $p$ goes to infinity with the sample size $n$. In this paper, we investigate the limiting distributions of the LRT statistic under general conditions. We find out all types of limiting distributions and obtain the necessary and sufficient conditions for the LRT statistic to converge to a normal distribution when $p$ goes to infinity. We also investigate the limiting distribution of the adjusted LRT test statistic proposed in Qi, Wang and Zhang (2019). Moreover, we present simulation results to compare the performance of classical chi-square approximation, normal and non-normal approximation to the LRT statistics, chi-square approximation to the adjusted test statistic, and some other test statistics.


翻译:考虑子矢量从美元变差正常随机矢量中独立的可能性比值测试(LRT)统计数据。我们致力于根据随机的大小抽样得出LRT统计数据的有限分布。众所周知,当数据尺寸或参数数目确定时,限制是奇夸分布。在最近由Qi、Wang和Zhang(Ann Inst Stat Math(2019)71:911-946)开展的工作中,显示LRT统计数据过于正常,条件是正常随机亚目标值统计的长度相对平衡,如果其尺寸为1美元,与抽样规模不完全。我们在本文件中调查了LRT统计数据在一般条件下的有限分布。我们发现所有类型的限制分布,并获得必要和充分的条件,使LRT统计数据在美元调整到精确时能够与正常分布一致。我们还调查了正常的LRT测试数据分布有限,在目前对正统汇率、Wang和Siralimal-Simal-I(2019)中,我们比较了目前正常的汇率测试结果,我们做了一些调整后,我们做了其他的汇率测试结果。(2019)。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月19日
Arxiv
0+阅读 · 2022年9月16日
Arxiv
0+阅读 · 2022年9月16日
Arxiv
0+阅读 · 2022年9月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员