Asymptotic study on the partition function $p(n)$ began with the work of Hardy and Ramanujan. Later Rademacher obtained a convergent series for $p(n)$ and an error bound was given by Lehmer. Despite having this, a full asymptotic expansion for $p(n)$ with an explicit error bound is not known. Recently O'Sullivan studied the asymptotic expansion of $p^{k}(n)$-partitions into $k$th powers, initiated by Wright, and consequently obtained an asymptotic expansion for $p(n)$ along with a concise description of the coefficients involved in the expansion but without any estimation of the error term. Here we consider a detailed and comprehensive analysis on an estimation of the error term obtained by truncating the asymptotic expansion for $p(n)$ at any positive integer $n$. This gives rise to an infinite family of inequalities for $p(n)$ which finally answers to a question proposed by Chen. Our error term estimation predominantly relies on applications of algorithmic methods from symbolic summation.
翻译:关于分区函数的零(n)开始研究Hardy和Ramanujan的工作。后来Rademacher获得了一个美元(n)的集合系列,而Lehmer则给出了一个美元(n)的折叠。尽管如此,尚不清楚美元(n)的完全零(n)的零(n)的零(n)的零(n)的扩展。最近,O'Sllivan研究了Wright发起的将美元(n)的零(n)的零(n)的零($)的分割成美元权力的零(k)的零(n),并随后获得了美元(n)的零(n)的零(n)的扩展,同时获得了对扩展所涉系数的简洁描述,但并未对错误术语作任何估计。我们在这里考虑对通过将美元(n)的零(n)的零(n)的零(n)正整数(n)的扩展对错误术语的估计进行详细和全面的分析。这导致了美元(n)的无限的不平等的组合,美元最终回答了Chen提出的问题。我们的错误术语估计主要依赖于从符号总和算法方法的应用。