In this paper we obtain quantitative Bernstein-von Mises type bounds on the normal approximation of the posterior distribution in exponential family models when centering either around the posterior mode or around the maximum likelihood estimator. Our bounds, obtained through a version of Stein's method, are non-asymptotic, and data dependent; they are of the correct order both in the total variation and Wasserstein distances, as well as for approximations for expectations of smooth functions of the posterior. All our results are valid for univariate and multivariate posteriors alike, and do not require a conjugate prior setting. We illustrate our findings on a variety of exponential family distributions, including Poisson, multinomial and normal distribution with unknown mean and variance. The resulting bounds have an explicit dependence on the prior distribution and on sufficient statistics of the data from the sample, and thus provide insight into how these factors may affect the quality of the normal approximation. The performance of the bounds is also assessed with simulations.
翻译:在本文中,我们获得了数量化的Bernstein-von Mises 类型在指数式家庭模型中以后方分布的正常近似值的分界线,当时以后方模式为中心或以最大可能性估测器为中心。我们通过Stein方法的版本获得的分界线不属零食,数据依赖;在全变异和瓦西斯坦距离方面,这些分界线都是正确的;对于对后方函数的顺利功能的期望而言,这些分界线的近似值也是正确的。我们的所有结果对单向和多变量后方的后方模型都有效,而且不需要在前设置一个组合。我们用模拟来说明我们关于各种指数式家庭分布的研究结果,包括Poisson、多音和正常分布,其平均值和差异不明。由此产生的分界线明显依赖先前的分布和来自抽样的数据的充分统计数据,从而深入了解这些因素如何影响正常近似质量。对界限的性能也通过模拟来评估。