Gaussian processes (GPs) produce good probabilistic models of functions, but most GP kernels require $O((n+m)n^2)$ time, where $n$ is the number of data points and $m$ the number of predictive locations. We present a new kernel that allows for Gaussian process regression in $O((n+m)\log(n+m))$ time. Our "binary tree" kernel places all data points on the leaves of a binary tree, with the kernel depending only on the depth of the deepest common ancestor. We can store the resulting kernel matrix in $O(n)$ space in $O(n \log n)$ time, as a sum of sparse rank-one matrices, and approximately invert the kernel matrix in $O(n)$ time. Sparse GP methods also offer linear run time, but they predict less well than higher dimensional kernels. On a classic suite of regression tasks, we compare our kernel against Mat\'ern, sparse, and sparse variational kernels. The binary tree GP assigns the highest likelihood to the test data on a plurality of datasets, usually achieves lower mean squared error than the sparse methods, and often ties or beats the Mat\'ern GP. On large datasets, the binary tree GP is fastest, and much faster than a Mat\'ern GP.
翻译:Gausian 进程( GPs) 产生良好的概率模型, 但大多数 GP 内核需要 $O (n+m) n2 时间, 其中美元是数据点数, 美元是预测地点数。 我们展示了一个新的内核, 允许 Gausian 进程在 $O (n+m)\ log (n+m) 时间中回归。 我们的“ 二进制树” 内核将所有数据点都放在二进制树叶上, 内核仅取决于最深的共同升温层的深度 。 我们可以将由此产生的内核矩阵以 $( n) 美元空间储存 $( n) 美元, 以 美元 (n\ log n) 时间为 美元。 我们的“ 二进制树内核” 方法也提供线性运行时间, 但是它们预测值比高得多。 在典型的回归任务组合中, 我们比较我们的内核与 Mat\ 最深的 On, 树内核数据通常比普通的平坦 数据 和 平数 数据 。