Nonparametric Bayesian models are used routinely as flexible and powerful models of complex data. Many times, a statistician may have additional informative beliefs about data distribution of interest, e.g., its mean or subset components, that is not part of, or even compatible with, the nonparametric prior. An important challenge is then to incorporate this partial prior belief into nonparametric Bayesian models. In this paper, we are motivated by settings where practitioners have additional distributional information about a subset of the coordinates of the observations being modeled. Our approach links this problem to that of conditional density modeling. Our main idea is a novel constrained Bayesian model, based on a perturbation of a parametric distribution with a transformed Gaussian process prior on the perturbation function. We also develop a corresponding posterior sampling method based on data augmentation. We illustrate the efficacy of our proposed constrained nonparametric Bayesian model in a variety of real-world scenarios including modeling environmental and earthquake data.
翻译:通常使用非对称贝叶斯模型作为灵活和强大的复杂数据模型。许多时候,统计员可能对相关数据分布有额外的信息性信念,例如,其中值或子集成分,这些成分不属于、甚至与先前的非对称过程不相容。然后,一个重要的挑战是将这一部分先前的信念纳入非对称贝叶斯模型。在本文中,我们受到以下各种环境的驱动:实践者对正在建模的观测的一组坐标拥有更多的分布性资料。我们的方法将这一问题与有条件密度模型联系起来。我们的主要想法是新颖的对称限制的贝叶斯模型,其基础是干扰参数分布,在扰动功能上先是经过改变的戈斯进程。我们还根据数据扩增量开发了相应的后方取样方法。我们介绍了在各种真实世界情景中(包括环境模型和地震数据模型)我们提议的受限的非对巴伊斯模型的有效性。