We reformulate unsupervised dimension reduction problem (UDR) in the language of tempered distributions, i.e. as a problem of approximating an empirical probability density function by another tempered distribution, supported in a $k$-dimensional subspace. We show that this task is connected with another classical problem of data science -- the sufficient dimension reduction problem (SDR). In fact, an algorithm for the first problem induces an algorithm for the second and vice versa. In order to reduce an optimization problem over distributions to an optimization problem over ordinary functions we introduce a nonnegative penalty function that ``forces'' the support of the model distribution to be $k$-dimensional. Then we present an algorithm for the minimization of the penalized objective, based on the infinite-dimensional low-rank optimization, which we call the alternating scheme. Also, we design an efficient approximate algorithm for a special case of the problem, where the distance between the empirical distribution and the model distribution is measured by Maximum Mean Discrepancy defined by a Mercer kernel of a certain type. We test our methods on four examples (three UDR and one SDR) using synthetic data and standard datasets.


翻译:我们用温和分布语言重新配置不受监督的维度减少问题(UDR ), 也就是说, 是一个通过另一种温和分布接近实验性概率密度函数的问题, 用美元- 维次空间支持 。 我们显示, 这项任务与另一个典型的数据科学问题相关 -- -- 足够的维度减少问题( SDR ) 。 事实上, 第一个问题的算法为第二个问题和另一个问题产生一种算法。 为了将分配的最优化问题降为普通函数的优化问题, 我们引入了一个非负性惩罚功能, 即“ 支持模型分布为美元- 维。 然后, 我们根据无限的维度低级别优化( 我们称之为交替方案), 提出尽量减少受处罚目标的算法 。 此外, 我们为问题的特殊案例设计一个高效的近似值算法, 实验性分布与模型分布之间的距离由某种类型的Mercer内核确定的最大平均值差异来测量 。 我们用合成数据和标准设置的四种例子( 3 UDR和1 SIF) 来测试我们的方法 。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Waveform inversion via reduced order modeling
Arxiv
0+阅读 · 2022年12月28日
Arxiv
65+阅读 · 2021年6月18日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员