A trie $\mathcal{T}$ is a rooted tree such that each edge is labeled by a single character from the alphabet, and the labels of out-going edges from the same node are mutually distinct. Given a trie $\mathcal{T}$ with $n$ edges, we show how to compute all distinct palindromes and all maximal palindromes on $\mathcal{T}$ in $O(n)$ time, in the case of integer alphabets of size polynomial in $n$.This improves the state-of-the-art $O(n \log h)$-time algorithms by Funakoshi et al. [PCS 2019], where $h$ is the height of $\mathcal{T}$. Using our new algorithms, the eertree with suffix links for a given trie $\mathcal{T}$ can readily be obtained in $O(n)$ time. Further, our trie-based $O(n)$-space data structure allows us to report all distinct palindromes and maximal palindromes in a query string represented in the trie $\mathcal{T}$, in output optimal time. This is an improvement over an existing (na\"ive) solution that precomputes and stores all distinct palindromes and maximal palindromes for each and every string in the trie $\mathcal{T}$ separately, using a total $O(n^2)$ preprocessing time and space, and reports them in output optimal time upon query.


翻译: trie $\ mathcal{T} 美元是根树, 这样每个边缘都由字母中的单一字符标注, 而同一节点中过期边缘的标签是截然不同的。 如果一个有美元边缘的 trie $\ mathcal{T} 美元, 我们展示了如何用$\ mathcal{T} 美元来计算所有不同的调色板和所有最大调色板, $(n) 美元, 以美元表示大小的整数正数字母 。 此外, 我们基于本地的 $( n) 美元, 并且由 Funakoshi 和 Al 来改进当前边端端点的调色调值 。 [PCS 2019, 美元是美元, 其中的顶值是$ 。 使用我们新的算法, 给定的 $\ mathal 链接的eertreetre {T$, 也可以用$( n) 时间获得 $ 。 此外, 我们基于本地的 $ (n) $- cal- cal- cal_ cal_ deal_ deal_ dal_ dal dal dal drodrodrodro), 和在目前的所有 格式中, 数据结构中, 格式中, 和在每分钟中以所有不同的调 $ 和 ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex exdrdrdrut ex ex ex ex exdrut ex ex ex ex ex ex exdrutrut ex ex exdrut ex dri ex dri 和 exdrut ex ex ex ex ex ex exal dal dal dal dal dal dal dal dal dal dal ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月2日
Arxiv
0+阅读 · 2023年1月1日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员