In this work, we propose a high-order multiscale method for an elliptic model problem with rough and possibly highly oscillatory coefficients. Convergence rates of higher order are obtained using the regularity of the right-hand side only. Hence, no restrictive assumptions on the coefficient, the domain, or the exact solution are required. In the spirit of the Localized Orthogonal Decomposition, the method constructs coarse problem-adapted ansatz spaces by solving auxiliary problems on local subdomains. More precisely, our approach is based on the strategy presented by Maier [SIAM J. Numer. Anal. 59(2), 2021]. The unique selling point of the proposed method is an improved localization strategy curing the effect of deteriorating errors with respect to the mesh size when the local subdomains are not large enough. We present a rigorous a priori error analysis and demonstrate the performance of the method in a series of numerical experiments.
翻译:在这项工作中,我们建议对粗略和可能高度悬浮系数的椭圆形模型问题采用高层次的多尺度方法。 仅使用右侧的规律性即可获得较高顺序的趋同率。 因此, 不需要对系数、 域或确切的解决方案进行限制性的假设。 根据该方法的本地化正弦形分解法精神, 通过解决本地子体的辅助问题, 构建了粗糙的问题调适的 ansatz 空间。 更确切地说, 我们的方法以Maier提出的战略为基础 [SIAM J. Numer. Anal. 59(2), 2021] 。 拟议方法的独特销售点是改进的本地化战略, 在本地子体面积不够大的情况下, 纠正网状大小方面差错恶化的影响。 我们提出严格的先验错误分析, 并在一系列数字实验中展示该方法的性能。